Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Organ Transplantation ; (6): 90-101, 2024.
Article in Chinese | WPRIM | ID: wpr-1005238

ABSTRACT

Objective To screen key autophagy-related genes in alcoholic hepatitis (AH) and investigate potential biomarkers and therapeutic targets for AH. Methods Two AH gene chips in Gene Expression Omnibus (GEO) and autophagy-related data sets obtained from MSigDB and GeneCards databases were used, and the key genes were verified and obtained by weighted gene co-expression network analysis (WGCNA). The screened key genes were subject to gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI) and immune infiltration analyses. Messenger RNA (mRNA)- microRNA (miRNA) network was constructed to analyze the expression differences of key autophagy-related genes during different stages of AH, which were further validated by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) in the liver tissues of AH patients and mice. Results Eleven autophagy-related genes were screened in AH (EEF1A2, CFTR, SOX4, TREM2, CTHRC1, HSPB8, TUBB3, PRKAA2, RNASE1, MTCL1 and HGF), all of which were up-regulated. In the liver tissues of AH patients and mice, the relative expression levels of SOX4, TREM2, HSPB8 and PRKAA2 in the AH group were higher than those in the control group. Conclusions SOX4, TREM2, HSPB8 and PRKAA2 may be potential biomarkers and therapeutic targets for AH.

2.
Chinese Journal of Blood Transfusion ; (12): 867-871, 2023.
Article in Chinese | WPRIM | ID: wpr-1004710

ABSTRACT

【Objective】 To explore critical regulatory genes in the hemoglobin switch process by analyzing transcriptomic data from the GSE6236, GSE17639 and GSE35102 datasets. 【Methods】 The mRNA expression profiles of the three datasets were downloaded from the GEO database and gene annotation was performed using the AnnoProbe package.The remove-BatchEffect function of the Limma package was used to remove batch effects. Weighted gene co-expression network analysis (WGCNA) was used to explore the most relevant modular genes in reticulocytes. The receiver operating characteristic curve (ROC) was used to assess the value of differential genes in differentiating between cord blood and adult peripheral blood reticulocytes. The GSE35102 dataset was used to validate changes in differential gene expression during hemoglobin transformation. Finally, real-time quantitative PCR was used to verify differential gene expression in cord blood and adult peripheral blood reticulocytes. 【Results】 Twelve genes showed differential expression in reticulocytes from cord blood and adult peripheral blood ( |logFC|≥1.5, P<0.05). WGCNA found that genes in the blue module were most strongly associated with reticulocytes (R2 =0.76,P<0.001). Of the five genes that overlapped between the two, only CDC42 showed differential expression in the combined dataset (t =3.776, P<0.001) and was able to better differentiate between reticulocytes in cord blood and adult peripheral blood. The expression of CDC42 varied significantly during the hemoglobin transformation process (Z = -2.908, P<0.01), and was significantly lower in adult reticulocytes compared to reticulocytes from cord blood (t =7.824, P <0.001). 【Conclusion】 The CDC42 gene is involved in the hemoglobin switching of reticulocytes and could be a potential therapeutic target for sickle cell disease.

3.
Frontiers of Medicine ; (4): 132-142, 2023.
Article in English | WPRIM | ID: wpr-971627

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a malignant tumor that mainly occurs in East and Southeast Asia. Although patients benefit from the main NPC treatments (e.g., radiotherapy and concurrent chemotherapy), persistent and recurrent diseases still occur in some NPC patients. Therefore, investigating the pathogenesis of NPC is of great clinical significance. In the present study, replication factor c subunit 4 (RFC4) is a key potential target involved in NPC progression via bioinformatics analysis. Furthermore, the expression and mechanism of RFC4 in NPC were investigated in vitro and in vivo. Our results revealed that RFC4 was more elevated in NPC tumor tissues than in normal tissues. RFC4 knockdown induced G2/M cell cycle arrest and inhibited NPC cell proliferation in vitro and in vivo. Interestingly, HOXA10 was confirmed as a downstream target of RFC4, and the overexpression of HOXA10 attenuated the silencing of RFC4-induced cell proliferation, colony formation inhibition, and cell cycle arrest. For the first time, this study reveals that RFC4 is required for NPC cell proliferation and may play a pivotal role in NPC tumorigenesis.


Subject(s)
Humans , Nasopharyngeal Carcinoma/pathology , Carcinoma/pathology , Replication Protein C/metabolism , Nasopharyngeal Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Movement
4.
Chinese Journal of Cancer Biotherapy ; (6): 1138-1143, 2020.
Article in Chinese | WPRIM | ID: wpr-829337

ABSTRACT

@#[Abstract] Objective: To investigate the pathogenesis of prostate cancer by analyzing the associated hub gene modules of prostate cancer and identifying key transcription factors and genes that affect these modules. Methods: WGCNA (weighted gene co-expressed network analysis) was used to identify hub gene modules associated with important clinicopathological features of prostate cancer, such as pathological staging, Gleason grading etc. The OPOSSUM online tool was used to analyze the transcription factors enriching and regulating those genes. Pathway enrichment analysis and protein-protein interaction network analysis were used to identify key genes in prostate cancer. Finally, the effects of these genes on clinical features and disease-free survival (DFS) of prostate cancer patients were analyzed. Results: Three hub modules were identified, and they were highly associated with pathologic T stage, pathologic N stage and Gleason grading of prostate cancer, respectively. Further screening revealed 13 key dysregulated transcription factors that participated in the regulation of these three hub modules. The differentially expressed genes regulated by the 13 key transcription factors were significantly enriched in Calcium signaling pathway, cGMP-PKG signaling pathway and cAMP signaling pathway. 14 key genes (PRKG1, PRKG2, CYSLTR2, GRPR, CHRM3, ADCY5, ADRA1D, EDNRA, EDNRB, CYSLTR2, AGTR1, GRPR, GRIA1 and OXT) were at important nodes in the gene network. Among them, the high expression of ADRA1A, PRKG2, CHRM3, ADRA1D and EDN3 significantly extended the DFS of patients with prostate cancer (all P<0.01). Conclusion: ADRA1A, PRKG2, CHRM3, ADRA1D and EDN3 are regulated by key dysregulated transcription factors and highly associated with clinical features of prostate cancer. Their high expressions will significantly prolong the DFS of prostate cancer patients, which may shed light to the discovery of mechanism in prostate adenocarcinoma.

5.
Chinese Traditional and Herbal Drugs ; (24): 5768-5775, 2020.
Article in Chinese | WPRIM | ID: wpr-846048

ABSTRACT

Objective: To screen the flavonoid constituents and targets of Litchi Semen in the intervention of progression and metastasis of colon adenocarcinoma (COAD). Methods: Through DRAR-CPI and SWISS database, potential targets of 19 flavonoids in Litchi Semen were searched. COAD gene expression data and clinical characteristic data from TCGA database were downloaded. Weighted gene co-expression network analysis (WGCNA) was used to establish the gene co-expression network and identify the co-expression module of COAD. The common targets of co-expression module and potential targets were used as the compound to interfere with the drug target of COAD. Protein interaction network analysis, KEGG and GO analysis were performed by String database. The Hub gene was extracted as potential biomarkers of COAD by the cytoHubba, and the interaction network of components, targets and pathways was established by the Cytoscape. The expressions of potential biomarkers were verified by HPA database, and the compounds were docked with the potential biomarkers. Results: A total of 18 co-expression modules were identified with seven of them were correlated with clinical features, such as survival time and tumor stage. Turquoise module was related to the development and transfer of COAD. 19 flavonoids in Litchi Semen acted on 380 potential targets. 34 targets repeated with turquoise module were selected as targets. GO analysis showed that the target points were enriched in 304 GO items, including 229 biological processes, 31 cell composition and 44 molecular functions; KEGG analysis showed that target points were enriched in cancer pathways, cell cycle, and progesterone-mediated 40 pathways including oocyte cancer pathway, cell senescence, and p53 signaling pathway. The genes of CDC25A, CDC25C, CCNB2 and AURKB were screened by cytoHubba as potential biomarkers which related to the progress and transfer of COAD. Compared with para-cancerous tissues, immunohistochemistry results obtained from HPA database showed that the protein expressions of CDC25C, AURKB and CCNB2 in COAD were increased significantly (P < 0.05), which were consistent with gene expression in TCGA data set. Narirutin, procyanidin A2, phloridzin and ent-epicatechin which were well combined to CDC25A, CDC25C and AURKB through hydrogen bond were screened. Conclusion CDC25A, CDC25C, CCNB2 and AURKB were the potential biomarkers closely related to the progression and metastasis of COAD. The mechanism of intervention of flavonoids in Litchi Semen on the progression and metastasis of COAD may be related to the regulation of biological processes, such as cell division, G2/M phase transformation of cell cycle, and the regulation of cancer pathway, p53 signaling pathway and other signaling pathways. Narirutin, procyanidin A2, phloridzin, ent-epicatechin and rutin could be treated as potential inhibitors of CDC25A, CDC25C and AURKB.

6.
Rev. cienc. salud (Bogotá) ; 17(2): 201-222, may.-ago. 2019. tab, graf
Article in English | LILACS, COLNAL | ID: biblio-1013870

ABSTRACT

Abstract Introduction : Aging is the main risk factor for the development of chronic diseases such as cancer, diabetes, Parkinson's disease, and Alzheimer's disease. The central nervous system is particularly susceptible to progressive functional deterioration associated with age, among the brain regions the prefrontal cortex (PFC) has one of the highest involvements. Transcriptomics studies of this brain region have identified the decrease in synaptic function and activation of neuroglia cells as fundamental characteristics of the aging process. The aim of this study was to identify hub genes in the transcriptomic deregulation in the PFC aging to advance in the knowledge of this process. Materials and methods : A gene co-expression analysis was carried out for 45 people 60 to 80 years old compared with 38 people 20 to 40 years old. The networks were visualized and analyzed using Cytoscape; citoHubba was used to determine which genes had the best topological characteristics in the co-expression networks. Results : Five genes with high topological characteristics were identified. Four of them -HPCA, CACNG3, CA10, PLPPR4- were repressed and one was over-expressed -CRYAB-. Conclusion: The four repressed genes are expressed preferentially in neurons and regulate the synaptic function and the neuronal plasticity, while the overexpressed gene is typical of glial cells and is expressed as a response to neuronal damage, facilitating myelination and neuronal regeneration.


Resumen Introducción : el envejecimiento es el principal factor de riesgo para el desarrollo de enfermedades crónicas como el cáncer, la diabetes, el Parkinson y el Alzheimer. El sistema nervioso central es particularmente susceptible al deterioro funcional progresivo asociado con la edad, entre las regiones cerebrales con mayor compromiso se encuentra la corteza prefrontal (CPF). Estudios de transcriptómica de esta región han identificado como características fundamentales del proceso de envejecimiento la disminución de la función sináptica y la activación de las células de la neuroglia. No es claro cuáles son las causas iniciales, ni los mecanismos moleculares subyacentes a estas alteraciones. El objetivo de este estudio fue identificar genes clave en la desregulación transcriptómica en el envejecimiento de la CPF para avanzar en el conocimiento de este proceso. Materiales y métodos : se hizo un análisis de coexpresión de genes de los transcriptomas de 45 personas entre 60 y 80 años con el de 38 personas entre 20 y 40 años. Las redes fueron visualizadas y analizadas usando Cytoscape, se usó citoHubba para determinar qué genes tenían las mejores características topológicas en las redes de coexpresión. Resultados : se identificaron cinco genes con características topológicas altas. Cuatro de ellos -HPCA, CACNG3, CA10, PLPPR4- reprimidos y uno sobreexpresado -CRYAB-. Conclusión : los cuatro genes reprimidos se expresan preferencialmente en neuronas y regulan la función sináptica y la plasticidad neuronal, mientras el gen sobreexpresado es típico de células de la glía y se expresa como respuesta a daño neuronal facilitando la mielinización y la regeneración neuronal.


Resumo Introdução : o envelhecimento é o principal fator de risco pra o desenvolvimento de doenças crónicas como o câncer, a diabetes, o Parkinson e o Alzheimer. O sistema nervoso central é particularmente susceptível ao deterioro funcional progressivo associado à idade, uma das regiões do cérebro com maior compromisso é o pré-frontal (CPF). Estudos de transcritoma desta região têm identificado como características fundamentais do processo de envelhecimento a diminuição da função sináptica e ativação das células da neuroglia. Não é claro quais são as causas iniciais, nem os mecanismos moleculares subjacentes a estas alterações. O objetivo deste estudo foi identificar genes chave na desregulação transcritoma no envelhecimento da CPF para avançar no conhecimento deste processo. Materiais e métodos : se fez uma análise de co-expressão de genes dos transcritomas de 45 pessoas entre 60 e 80 anos com o de 38 pessoas entre 20 e 40 anos. As redes foram visualizadas e analisadas usando Cytoscape, usou-se citoHubba para determinar que genes tinham as melhores características topológicas nas redes de co-expressão. Resultados : identificaram-se cinco genes com características topológicas altas. Quatro deles -HPCA, CACNG3, CA10, PLPPR4- reprimidos e um superexpresso -CRYAB-. Conclusão : os quatro genes reprimidos se expressam preferencialmente em neurônios e regulam a função sináptica e plasticidade neuronal, enquanto o gene superexpresso é típico de células da glia e se expressa como resposta ao dano neuronal facilitado a mielinização e a regeneração neuronal.


Subject(s)
Humans , Aging , Prefrontal Cortex , Transcriptome
7.
Braz. j. med. biol. res ; 52(11): e8333, 2019. tab, graf
Article in English | LILACS | ID: biblio-1039264

ABSTRACT

Not much is known about the roles of long non-coding RNAs (lncRNAs) for chronic kidney disease (CKD). In this study, we included CKD patient cohorts and normal controls as a discovery cohort to identify putative lncRNA biomarkers associated with CKD. We first compared the lncRNA expression profiles of CKD patients with normal controls, and identified differentially expressed lncRNAs and mRNAs. Co-expression network based on the enriched differentially expressed mRNAs and lncRNAs was constructed using WGCNA to identify important modules related to CKD. A lncRNA-miRNA-mRNA pathway network based on the hub lncRNAs and mRNAs, related miRNAs, and overlapping pathways was further constructed to reveal putative biomarkers. A total of 821 significantly differentially expressed mRNAs and lncRNAs were screened between CKD and control samples, which were enriched in nine modules using weighted correlation network analysis (WGCNA), especially brown and yellow modules. Co-expression network based on the enriched differentially expressed mRNAs and lncRNAs in brown and yellow modules uncovered 7 hub lncRNAs and 53 hub mRNAs. A lncRNA-miRNA-mRNA pathway network further revealed that lncRNAs of HCP5 and NOP14-AS1 and genes of CCND2, COL3A1, COL4A1, and RAC2 were significantly correlated with CKD. The lncRNAs of NOP14-AS1 and HCP5 were potential prognostic biomarkers for predicting the risk of CKD.


Subject(s)
Humans , RNA, Messenger/genetics , Genetic Markers/genetics , Renal Insufficiency, Chronic/genetics , RNA, Long Noncoding/genetics , Prognosis , Case-Control Studies , Mass Screening , Gene Expression Profiling , Renal Insufficiency, Chronic/diagnosis
8.
Protein & Cell ; (12): 175-186, 2016.
Article in English | WPRIM | ID: wpr-757145

ABSTRACT

The mammalian brain is heterogeneous, containing billions of neurons and trillions of synapses forming various neural circuitries, through which sense, movement, thought, and emotion arise. The cellular heterogeneity of the brain has made it difficult to study the molecular logic of neural circuitry wiring, pruning, activation, and plasticity, until recently, transcriptome analyses with single cell resolution makes decoding of gene regulatory networks underlying aforementioned circuitry properties possible. Here we report success in performing both electrophysiological and whole-genome transcriptome analyses on single human neurons in culture. Using Weighted Gene Coexpression Network Analyses (WGCNA), we identified gene clusters highly correlated with neuronal maturation judged by electrophysiological characteristics. A tight link between neuronal maturation and genes involved in ubiquitination and mitochondrial function was revealed. Moreover, we identified a list of candidate genes, which could potentially serve as biomarkers for neuronal maturation. Coupled electrophysiological recording and single cell transcriptome analysis will serve as powerful tools in the future to unveil molecular logics for neural circuitry functions.


Subject(s)
Humans , Antigens, Differentiation , Electrophysiological Phenomena , Physiology , Gene Expression Regulation , Physiology , Genome-Wide Association Study , Human Embryonic Stem Cells , Cell Biology , Metabolism , Induced Pluripotent Stem Cells , Cell Biology , Metabolism , Multigene Family , Physiology , Neurons , Cell Biology , Metabolism , Transcriptome , Physiology
SELECTION OF CITATIONS
SEARCH DETAIL